Holomorphic Diffusions and Boundary Behavior of Harmonic Functions
نویسندگان
چکیده
Cornell University We study a family of differential operators Lα α ≥ 0 in the unit ball D of Cn with n ≥ 2 that generalize the classical Laplacian, α = 0, and the conformal Laplacian, α = 1/2 (that is, the Laplace–Beltrami operator for Bergman metric in D). Using the diffusion processes associated with these (degenerate) differential operators, the boundary behavior of Lα-harmonic functions is studied in a unified way for 0 ≤ α ≤ 1/2. More specifically, we show that a bounded Lα-harmonic function in D has boundary limits in approaching regions at almost every boundary point and the boundary approaching region increases from the Stolz cone to the Korányi admissible region as α runs from 0 to 1/2. A local version for this Fatou-type result is also established.
منابع مشابه
A special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملA remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane
In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.
متن کاملFundamental Steady state Solution for the Transversely Isotropic Half Space
Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...
متن کاملUnivalent holomorphic functions with fixed finitely many coefficients involving Salagean operator
By using generalized Salagean differential operator a newclass of univalent holomorphic functions with fixed finitely manycoefficients is defined. Coefficient estimates, extreme points,arithmetic mean, and weighted mean properties are investigated.
متن کاملHarmonic Analysis of Functions
Sato’s hyperfunctions are known to be represented as the boundary values of harmonic functions as well as those of holomorphic functions. The author obtains a bijective Poisson mapping P : S∗′(Rn) −→ S∗′(S∗Rn) ∩H(S∗Rn) where H(S∗Rn) is a kind of Hardy subspace of B(S∗Rn). Moreover, the author has an isomorphism between Sobolev spaces P : W (R) −→ W s+(n−1)/4(S∗Rn) ∩H(S∗Rn). There are some simil...
متن کامل